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We consider sqn roots of unity and define a class .3f~,.( Up f) of rational func­
tions which interpolate a given analytic function f on Up a large subset of the roots
of unity satisfying a congruence relation. f is then approximated over ,!#':,;.U: U,.)
with respect to I,-norm on the complement of U,. We also discuss Walsh type equi-
convergence, ,( 1995 Academic Press. Inc

I. INTRODUCTION

Let Tr s denote the family of all polynomials of degree :(s, and let
L" _ 1(::' f) E Tr" _ I denote the Lagrange interpolant to a function f analytic
in the region 1::/ < If, If> 1, at the 11 roots of ::" = 1. It is well-known [7]
that the best 11-approximant to f from Tr,,_ lover the set of the 11 zeros of
::" -1 is L,,_I(::' f). During the last decade several papers have appeared
on discrete least squares minimization problems considered over a large set
of the primitive roots of unity. In [3] Riv1in noted that the (n-1)th
degree polynomial which solves the problem

qn I

mIll L If(wk
) - p(olW,

I' E Tr n 1 k =()

wlj"= 1, q;::: 1 (1.1 )

is essentially 5,,_1[::, Llj"_I(::,f)], the (n-I)th degree Taylor section of
the polynomial Llj"_ 1(::' fl. In a different direction Sharma and Ziegler
considered the following question [4]: If ::f(f, UJ denotes the class of all
polynomials of degree :( IIq( S - I) + II - I interpolating f on the set

v, = {OJ I' : v = I, 2, ..., sqn; v 1= 0 (mod s); w'lj" = I }, (1.2)

find the solution to the problem

'I" .0 I

min I If(A') - Q(A'W,
QE fU. Ud ,.~o
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ASlj
" = I, J.1= v,. (1.3 )
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They discovered that the solution Q,;(::,,f) E !E(f; V,) to ( 1.3) is given by

Q,;(::.,f)=L*(::.,f)+W,(::.)S"_I[::.,L q,, 1(::.,g)J (1.4)

where L *(::.,.f) is the Lagrange interpolant of degree nq(s - I) - I to / on
V" g(::.) := s-l[f(::.) - L *(::.,.f) J and

W,.(z) = (::.''1''_1 )/(::.'1" -I). (1.5 )

The aim of the present note is two fold. First, we develop a variant of
the minimization problem (1.3) replacing !E(f, VJ by a class of certain
interpolatory rational functions. The second problem to be discussed here
is related to Walsh-type equiconvergence. This topic has attracted many
mathematicians in the last decade. For the background we refer the reader
to [2 J-[ 6].

2. PRELIMINARIES AND STATEMENT OF PROBLEMS

We denote by AI" I < p < w, the class of functions analytic in 1::.1 < p
with at least one singularity on 1::.1 = p, and set

N=qn(s-I) and N*=N+n+m (2.1 )

where s ~ 1, q ~ - I are fixed integers. For a given a> I, let .~~." denote
the class of rational functions r(::.) of the form

r(::.) = p(::.)/(::." - a"), (2.2)

With the set V, defined in (1.2) and an I E A 1" let .q.f~.,,(f, UJ denote the
subclass of rational functions r E :q.f~.1l which interpolate / on V,.

We shall consider the following problems:

(P 1) For a given I E A I" p> I, find the rational function
R~._.Il(::" /) E :YI~.-.,Jf; VJ which solves the problem

qn-l

mm I I/O.") - RO.'·W,
RE·-1f~'.,n(.I~(l.l') ),=0

);''1'' = 1,). ¢ Us (2.3)

(P2 ) If rN-.,,(::',.f) E 9f';v-.n minimizes IE AI' on 1::.1 = 1 in the L 2-sense
over the class ;q.f~;_." ([5J, (1.4)) and if R't-.,,(::',f) is the solution of (Pd,
what is the region of convergence of the difference

(2.4 )

to zero as n -> w?
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Remark 2.1. When s = 1, the solutions to the problems (P I) and (P 2)
are provided in [1]. For the justification, it is enough to note that the set
U, which consists of the zeros of W,(z) is empty for s = I.

3. SOLUTION OF (P 1 )

In order to solve the problem (P I)' we need an expressIOn for the
Lagrange interpolant of the function

(3.1 )

where R~ _ 1.,,( Z, f) is the rational function in .'?-f';". _I,,, which interpolates f
on U,. More precisely, we need the following Lemma:

LEMMA 3.1. If s ~ 2 and q ~ I are fixed integers and ([

q-I II-I

L ( - 11) -" "C' - " +/"nq - 1 .-, - L,. '- I-' + jn'"

i~O 1'=0

(3.2)

is the Lagrange polynomial of degree qn - I which interpolates the function
h( z) at the roots of z"" = I, then

c . =_1_ . [/.o(q)t,,-V-I ti'l-J),,-,.-IIJ f(t) dt
V+j11 2nit. a 1i + 11" + t'l"-I WAf)'

where r is a circle It I='7, 1<'7 <p and

(3.3 )

(3.4 )

Proof In order to establish (3.4), we first find LII'I_1(z, R~'_l."(z,f)).

Since

I (t"-a") G(t,z)
R~. - I.,J z,f) = 2ni t W,( t) . z" _ a" f(t) dt. (3.5)

where

G(t, z) := W,(t) - W,(z),
t-z
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it is enough to evaluate L'I"_ t (.::, G(t, z )/z" - a"). It is easy to see that

_ . _. _s-J (_ t~·qJJ_:WJIl)_({n_:qnS-ltvc/n_l
L'I,,_t(_,G(t,-))- L: L'I" t -, _ - _ I 'I" I

"~() t-_ t-_ 1,=0 t -

= ~" - z'l" l {''I'' - I ~.I-'-1
I-z (1'1"-1)2 1'1"-1

=t'l"-Z'l"l W,(I) -~.I_'-1.
I - z 1'1" - I t'l" - I

Therefore,

where we have set

W,(t) (I'I"-Z'l" I )S t - =~'-L - .--
I ( , .... ) tIft _ I t/n - I -, t _ 2 =Jl - a"

(3.6)

It follows from (3.5) that

where

I (t" - a") /(t)
[t(Z)=~.f ··-·-·········St(t,z)dt,

271:/ r W,(t)

and

I f (t"-a")/(t)
[o( z) =--. ~....... So(t, z) dt.
- 2m r W,(t) -

Since

(t'l" - z'l")( t" - a") t'l" - Zlf" (t" - z")( t lf" - z'l")
------=----+------

(t - z)( z" - a") t - z (t - z)( z" - a") ,

(3.7)
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we have

1 I (f(t)(t qn - ;:qn)
11(;:)=- dt

2ni r (t - ;: )(tqn - I )

The second integral in (3.8) vanishes because

~ ( ... (tqn _ _...qn)( tn _ ;:n)) = f(t)(tn _ ;:n)
L qn 1 ~, .tqn - 1 ~ (t - ;:){;:n - an) (t _ ;:)(;:n _ an)

Therefore,

Similarly,

where

s . f(t) ( t qn _ ;:qn)
I ... =- --L'" dtJ(-) 2ni Jrtw,n-1 qm~l -, t-;:

S qn - I f(t) t qn
=- " ;:vf -·-dt2ni L.... t V + I r,qn -1 'v=o r

and

s I f(t) ( (t'1"_;:'1n)(tn _;:n))
1(7)-- ---L'" dt

4 - - 2ni r {,qn _ I qn - I -, (t _ ;:)(;:n _ an)

259

(3.8 )

(3.9)

(3.10)

(3.11 )

Since Lqn_I(;:,I/;:n-an)=(a'1n-n/l-a'1n)LJ:ci;:)n/a)n, it is easy to see
that

where ),o(q) is defined in (3.4). Combining (3. 7) with (3.9 )-( 3.10) we obtain
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Using (3.1 ), we observe that
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L"n _ I(Z, h) = .I' -I[L,,"_ I(Z, f) - L'1Il_I(z, R:t_I.II(Z, f))]

= s-I[/3(z) +14(z)].

Finally, the substitution of the values of 1}(z) and 14 (z) from (3.11 )-(3.12)
in the above relation establishes the equation (3.2) for which the coef­
ficients are given in (3.3). I

Now we proceed to determine a solution of the problem (P L)' First we
note that any rational function R(z) E .UA",.· •. II(f' U,) can be expressed as

R(z) = RX·_ L.n(Z' f) + W,.(z) B(z)

for some B(Z)E.UA~+m,n' Here R:t_l.II(z,f) is the rational function used in
(3.1). Since Wp. V) = .I' for any solution A of z''11l = 1, it follows that

If(A V) - R(}.v)!" = If(A V) - RX'_I.II(}.", f) -sB(A v)!"

= Ish(),V) -sB(}.v)!".

Thus the problem (P I) is equivalent to minimizing

lin -- 1

L Ih((()') - B(w v)!",
,,~O

(O"n = I, (3.13 )

over all rational functions B E!?!~ +m,n" This problem had been solved by
the author in [I]. In fact, if L"II_1(Z, h) := l:;J~-I/ c"z" then ([ I], Proposi­
tion 1)

l1+m

B* (.,. 11)'- ~ r _VI(.,.II - a")
11+»I,I1';""l .- L v';" / ...

•,=0

will be the minimizer of (3.13) over .~~ + m,lI where

(3.14 )

r ="

al'1-I)II(I_a2n)'1-I.
, II + ~ -In

-(va I ('1-1)211 L. a C"+)II'
-a )=1

a('1-- l ln(l_a211 )'1--I .
. , -In

1+ '1n L. a Cv+)n'
a )=0

a2I'1--I)II(I_a211)q--L .
. ~ --JII

C V - n - I 1'1- I )211 L. (J C" + I) - 1),,,
- (J )= I

m+l~v~n-1 (3.15)
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Now the description of c/s given in Lemma 3.1 can be applied to r v's for
the explicit representation of B~+ 1II.n( Z, h). Thus

(3.16 )

is the rational function in P~~' •. n(f, U,) which provides the desired solution
of (PI)'

Remark 3.2. The relation (3.15) reduces to r v = (I - an) c v' 0 ~ V~ n - 1
when q = I and m = - I. Thus, the rational function B:_ I. n( z, h) turns out
to be [( I _an)/(zn - an)] Ln_l(z, h). Consequently, the solution (3.16) to
( PI), in this case, bases entirely on the interpolatory character of the
rational functions Rt- I.n(z, f) and B:_ l.n(Z, h).

4. SOLUTION OF (P 2)

The problem (P2 ) deals with Walsh-type equiconvergence. Here we shall
provide its solution and note that it extends an earlier result due to Sharma
and Ziegler ([ 4], Theorem 1). In order to avoid lengthly expressions in the
calculations, we shall discuss the problem (P2) for m = - 1. However, the
solution stands valid for any integer m < - 1. More precisely, we prove

THEOREM 4.1. Let s? 2 and q? 2 be fixed integers, and let N: =
(s - I )qn. If f E A p' I < p < oc, and a > I then (cf (2.4))

lim {RX· +" _ 1.,,( z,f) - r,lV+n - I.n(z,f)} = 0,
n-+x

where D <7 for q ? 3 is given by

(4.1 )

(i ) {Z E '1!i : IZI < pi + 1/1 s - I I}

(ii) {ZE'f>: 1=1 <pl+I/I,-llq.al/(s-llq, Izi ¥a}

(iii) {Z E '1!i : I=I< P . a 2
/1' - I 1'1, I=I 'I a}

and for q = 2, D n is given by

(i) {=E '1!i : I=I<pI + 1/1' - II}

(ii) {z E 'f>: 1=1 <pi + 3/12,- 31. a l /13 -2sl, Izi 'I a}

(iii) {=E {(i : I=I< P . a I /1 s - II, I=I 'I a}

if a?p'i- I

if p ~a<pq-I

if a <p,

if a?p'"

if p~a<ps

if a<p.

Moreover, the convergence is uniform and geometric in any compact subset
of region Dn ·



262 M. A. BOKHARI

The proof of the above theorem requires integral representations of the
rational functions R't+lI_l.lI(z,j) and r N+ lI _ l.lI(z,!) together with some
estimates which we describe below as remarks.

Remark 4.1. It is known that ([ 5], (1.4))

1 t" - u" k(t) - k( z )
rN+1I-1.1I(Z'!)=2nitzll_ull· k(t) dt (4.2)

where r is a circle It I=p', 1 <p' <p, and

Remark 4.2. If we set

(4.3 )

U(q-111I(I_u 211 )

<>1 = 1+uqll '

then using (3.3) we can wri te

I-(ut)-qll
J ----,--­
2- 1-(ut)-l1 (4.4 )

where Ao(q) is given by (3.4). Thus the numerator of the rational function
B~_I.lI(Z, h) (cf. (3.14)) can be expressed as

Remark 4.3. Due to the interpolatory properties of the rational function
R't_l.,,(z, j) (cf. (3.1)) we have the following integral representations:

* '7 __I f t." - u" . W,(t) - W,.( z) .f(z)
RN - J•II(-,f)-2· _"_ II W(t) t_7dt.

7[/ r- U "' _
(4.6)

Remark 4.4. Since U> I, we have the following estimates (cf. (4.4),
(3.4)):

J 1Ao(q) = u"( I - u -2,,) + o(u -2'111 +")

t"Un(U- 2" - I)
J,J,. (q) = + O(U- q,,+,,).

- 0 t" -U-"

The above remarks bring us to the

(4.7)
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Proof of Theorem 4.1. From (4.2), (4.5), and (4.6) we can write

1 f f(t)= -. - {K1, Z, 0') + Kz(t, z, 0') - K 3(/, z, O')} dt
2m rt-z

where

k(z) I" _0'''
K,(t,z, (j)=-k()'-"--,,,

I Z-(j

263

(4.8)

After the cancellation of suitable terms and using (4.7) together with the
estimate Ws\z)/Ws,(t) = O(ZN/tN) we notice that

(4.9)

Similarly, a detailed analysis with appropriate cancellation of certain terms
of higher order leads us to

1 {(ZN {II})--- 0 -max --
-Z"_(J" tN (J"'ltl"

(
ZN +" {I I 0'" 1})o -- ax -- --- --+ tN m !tlsq,,' \t\" (j"' \t!sqll+I1' (J2"

Thus, from (4.9) and (4.10) we can write

(4.10)
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where
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ZI.,-2 1'!,,+" {U" }
T = max 1--

1 {(s - Ilqn ' ItIn '

Z Is - I Jq" { It I('! + I I" It I'I" }
T = max -- ItII 'I - I I" U"

2 txqn (J2J1 '(JIl' "

After considering various cases for U separately for the integers q;?: 3 and
q=2, we analyze the order of the terms T I , T 2 , T,. This leads us to the
determination of ditTerent regions of convergence for (4.8) as desired in the
theorem. I

Remark 4.5. Theorem 4.1 does not consider the case when s = I or
q = 1. These cases are already settled in [I] and [5], respectively. It is
worth mentioning that problem (PI) entirely deals with lz-minimization if
s = I, whereas it reduces to an interpolation problem when q = I.

Remark 4.6. IIf we let (J --> if) in Theorem 4.1, we retrive a result of
Sharma-Ziegler ([ 4], Theorem I ).

5. GENERALIZATION OF PROBLEMS PI AND Pz

The problem P I discussed above involves the nodes distributed uniformly
on the unit circle. We may formulate this problem in a more general setting
where the nodes are selected on the circles of radii ex and fJ with
max{ex, fJ} < p. The underlying idea in this set up is due to a result of
Lou Yuanren [8]. We conclude our paper with the following generaliza­
tion of problems P I and P 2 :

(Pf) Let 0 < tX < P be a real number. Consider the zeros of z'!"S - tX'!tlS

and divide them into two disjoint sets Us.~ and V,.x where V,.~ = {set of
zeros of zq" - ex'!"} and Us.~ = {set of zeros of polynomial W=.~(z) =
(zq""-tXq"S)/(zq"-exq,,)}. Then #Vs.x=nq and #V"x=N:=qn(s-l)
where # V denotes the cardinality of a set V. If (J > I is any real number,
let R~ + m +" denote the class of rational functions of the form
p(z)/(z"-u"),p(Z)E7T:N+1l +m. We shall denote by R~+m+1l,x(z,f) the sub­
set of rational functions from the class R~+m+" which interpolate
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f(z) E A p , p> 1, on the set U,,1' The problem is to determine the rational
functions R(z, oc, f) E R~. + m + n.1 which minimizes.

gn-l

I If(ocwk) - R(IXw\ fW,
k~O

(5.1 )

(Pi*) In this problem, we replace the set V,.1 by V'.f>' where 0 <
(X i= fJ < p and seek the rational function R(z, IX. fJ,f) E R~. + m+/I,>.(z, fl such
that it attains the

qn-I

min L If(fJwk ) - R(fJwk,fW,
k~O

(5.2)

(P:) If r N + m +,,(z, f) E R~. + m + /I minimizes the difference
If(z) - rN+m+n(z, fll in the L 2-norm on Izi = 1, we want to find the
regions of equiconvergence of the difference IrN+m +,,(z,f) - R(z, oc, fll and
IrN+m+n(z,f) - R(z, IX, fJ,f)1 respectively.
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