Interpolation Mixed with I_{2}-Approximation

M. A. Bokhari

Department of Mathematical Sciences, King Fahd University of Petroleum and Minerals. Dhahran 31261, Saudi Arabia

Communicated by T. J. Riclin
Received October 17, 1991: accepted in revised form November 26, 1994

Abstract

We consider sqn roots of unity and define a class $\mathscr{R}_{N}^{a},\left(U_{s}, f\right)$ of rational functions which interpolate a given analytic function f on U_{s}, a large subset of the roots of unity satisfying a congruence relation. f is then approximated over $\boldsymbol{R}_{\mathrm{N}}^{\boldsymbol{*}}\left(f, U_{s}\right)$ with respect to l_{2}-norm on the complement of U_{s}. We also discuss Walsh type equiconvergence. if 1995 Academic Press. Inc.

1. Introduction

Let π_{s} denote the family of all polynomials of degree $\leqslant s$, and let $L_{n-1}\left(z_{,} f\right) \in \pi_{n-1}$ denote the Lagrange interpolant to a function f analytic in the region $|z|<\eta, \eta>1$, at the n roots of $z^{n}=1$. It is well-known [7] that the best l_{2}-approximant to f from π_{n-1} over the set of the n zeros of $z^{n}-1$ is $L_{n-1}(z, f)$. During the last decade several papers have appeared on discrete least squares minimization problems considered over a large set of the primitive roots of unity. In [3] Rivlin noted that the ($n-1$) th degree polynomial which solves the problem

$$
\begin{equation*}
\min _{p \in \pi_{p-1}} \sum_{k=0}^{q n}\left|f\left(\omega^{k}\right)-p\left(\omega^{k}\right)\right|^{2}, \quad \omega^{\psi \prime}=1, q \geqslant 1 \tag{1.1}
\end{equation*}
$$

is essentially $S_{n-1}\left[z, L_{q n-1}(z, f)\right]$, the $(n-1)$ th degree Taylor section of the polynomial $L_{\psi n-1}(z, f)$. In a different direction Sharma and Ziegler considered the following question [4]: If $\mathscr{L}\left(f, U_{s}\right)$ denotes the class of all polynomials of degree $\leqslant n q(s-1)+n-1$ interpolating f on the set

$$
\begin{equation*}
U_{s}=\left\{\omega^{v}: v=1,2, \ldots, s q n ; v \not \equiv 0(\bmod s) ; \omega^{v i q n}=1\right\} \tag{1.2}
\end{equation*}
$$

find the solution to the problem

$$
\begin{equation*}
\min _{Q \in \mathscr{M}\left(f, U_{s}\right)} \sum_{n=0}^{q n-1}\left|f\left(\lambda^{v}\right)-Q\left(\lambda^{v}\right)\right|^{2}, \quad \lambda^{* q n}=1, \lambda \notin U_{*} \tag{1.3}
\end{equation*}
$$

They discovered that the solution $Q_{n}^{*}(z, f) \in \mathscr{L}\left(f, U_{s}\right)$ to (1.3) is given by

$$
\begin{equation*}
Q_{n}^{*}(z, f)=L^{*}(z, f)+W_{s}(z) S_{n-1}\left[z, L_{q n} \quad 1(z, g)\right] \tag{1.4}
\end{equation*}
$$

where $L^{*}(z, f)$ is the Lagrange interpolant of degree $n q(s-1)-1$ to f on $U_{s}, g(z):=s^{-1}\left[f(z)-L^{*}(z, f)\right]$ and

$$
\begin{equation*}
W_{s}(z)=\left(z^{s y n}-1\right) /\left(z^{4 n}-1\right) \tag{1.5}
\end{equation*}
$$

The aim of the present note is two fold. First, we develop a variant of the minimization problem (1.3) replacing $\mathscr{L}\left(f, U_{s}\right)$ by a class of certain interpolatory rational functions. The second problem to be discussed here is related to Walsh-type equiconvergence. This topic has attracted many mathematicians in the last decade. For the background we refer the reader to [2]-[6].

2. Preliminaries and Statement of Problems

We denote by $A_{p}, 1<\rho<\infty$, the class of functions analytic in $|z|<\rho$ with at least one singularity on $|z|=\rho$, and set

$$
\begin{equation*}
N=q n(s-1) \quad \text { and } \quad N^{*}=N+n+m \tag{2.1}
\end{equation*}
$$

where $s \geqslant 1, q \geqslant-1$ are fixed integers. For a given $\sigma>1$, let $\mathscr{R}_{v, n}^{\sigma}$ denote the class of rational functions $r(z)$ of the form

$$
\begin{equation*}
r(z)=p(z) /\left(z^{\prime \prime}-\sigma^{\prime \prime}\right), \quad p \in \pi_{v} \tag{2.2}
\end{equation*}
$$

With the set U_{s} defined in (1.2) and an $f \in A_{p}$, let $\operatorname{Ran}_{v, n}^{\pi}\left(f, U_{s}\right)$ denote the subclass of rational functions $r \in \mathscr{R}_{v, n}^{\sigma}$ which interpolate f on U_{s}.

We shall consider the following problems:
$\left(\mathbf{P}_{1}\right)$ For a given $f \in A_{p}, \rho>1$, find the rational function $R_{N^{*}, n}^{*}(z, f) \in \mathscr{R}_{N^{*}, n}^{\sim}\left(f, U_{s}\right)$ which solves the problem

$$
\begin{equation*}
\min _{R \in \rightarrow_{N_{v}^{c}, n^{\prime}}\left(f, U_{s}\right)} \sum_{v=0}^{q n-1}\left|f\left(\lambda^{v}\right)-R\left(\lambda^{v}\right)\right|^{2}, \quad \lambda^{x q n}=1, \lambda \notin U_{s} \tag{2.3}
\end{equation*}
$$

$\left(\mathrm{P}_{2}\right)$ If $r_{N^{*}, n}(z, f) \in \mathscr{R}_{N^{*}, n}^{\pi}$ minimizes $f \in A_{j}$, on $|z|=1$ in the L_{2}-sense over the class $\mathscr{R}_{N^{*}, n}^{\sigma}([5],(1.4))$ and if $R_{N^{*}, n}^{*}(z, f)$ is the solution of $\left(P_{1}\right)$, what is the region of convergence of the difference

$$
\begin{equation*}
R_{N^{*}, n}^{*}(z, f)-r_{N^{*}, n}(z, f) \tag{2.4}
\end{equation*}
$$

to zero as $n \rightarrow \infty$?

Remark 2.1. When $s=1$, the solutions to the problems $\left(\mathbf{P}_{1}\right)$ and $\left(\mathbf{P}_{2}\right)$ are provided in [1]. For the justification, it is enough to note that the set U_{s} which consists of the zeros of $W_{s}(z)$ is empty for $s=1$.

3. Solution of (P_{1})

In order to solve the problem $\left(\mathrm{P}_{1}\right)$, we need an expression for the Lagrange interpolant of the function

$$
\begin{equation*}
h(z):=s^{-1}\left[f(z)-R_{N-1 . n}^{*}(z, f)\right] \tag{3.1}
\end{equation*}
$$

where $R_{N-1, n}^{*}(z, f)$ is the rational function in $\mathscr{R}_{N-1, n}^{\sigma}$ which interpolates f on U_{s}. More precisely, we need the following Lemma:

Lemma 3.1. If $s \geqslant 2$ and $q \geqslant 1$ are fixed integers and if

$$
\begin{equation*}
L_{n q-1}(z, h)=\sum_{j=0}^{q-1} \sum_{v=0}^{n-1} c_{v+j} z^{v+j n} \tag{3.2}
\end{equation*}
$$

is the Lagrange polynomial of degree qn-1 which interpolates the function $h(z)$ at the roots of $z^{q n}=1$, then

$$
\begin{equation*}
c_{v+j n}=\frac{1}{2 \pi i} \int_{\Gamma}\left[\frac{\lambda_{0}(q) t^{n-v-1}}{\sigma^{(j+1) n}}+\frac{t^{(q-j) n-v-1)}}{t^{q n}-1}\right] \frac{f(t)}{W_{s}(t)} d t \tag{3.3}
\end{equation*}
$$

where Γ is a circle $|t|=\eta, 1<\eta<p$ and

$$
\begin{equation*}
\lambda_{0}(q):=\sigma^{q \eta} /\left(1-\sigma^{q \eta}\right) \tag{3.4}
\end{equation*}
$$

Proof. In order to establish (3.4), we first find $L_{n q-1}\left(z, R_{N-1, n}^{*}(z, f)\right)$. Since

$$
\begin{equation*}
R_{N-1, n}^{*}(z, f)=\frac{1}{2 \pi i} \int_{I} \frac{\left(t^{n}-\sigma^{n}\right)}{W_{s}(t)} \cdot \frac{G(t, z)}{z^{n}-\sigma^{n}} f(t) d t . \tag{3.5}
\end{equation*}
$$

where

$$
G(t, z):=\frac{W_{s}(t)-W_{s}(z)}{t-z},
$$

it is enough to evaluate $L_{q n-1}\left(z, G(t, z) / z^{n}-\sigma^{n}\right)$. It is easy to see that

$$
\begin{aligned}
L_{q n-1}(z, G(t, z)) & =\sum_{v=0}^{s-1} L_{q n \cdot 1}\left(z, \frac{t^{v q n}-z^{v q n}}{t-z}\right)=\frac{t^{q n}-z^{q n} s-1}{t-z} \sum_{v=0}^{t^{v q n}-1} \frac{t^{t^{q n}}-1}{} \\
& =\frac{t^{q n}-z^{q n}}{t-z}\left[\frac{t^{s q n}-1}{\left(t^{q n}-1\right)^{2}}-\frac{s}{t^{q n}-1}\right] \\
& =\frac{t^{q n}-z^{q n}}{t-z}\left[\frac{W_{s}(t)}{t^{q n}-1}-\frac{s}{t^{q n}-1}\right] .
\end{aligned}
$$

Therefore,

$$
L_{i \nmid n-1}\left(z, \frac{G(t, z)}{z^{n-\sigma}{ }_{n}}\right)=S_{1}(t, z)-S_{2}(t, z)
$$

where we have set

$$
\begin{align*}
& S_{1}(t, z)=\frac{W_{s}(t)}{t^{q n}-1} L_{\psi n-1}\left(z, \frac{t^{q n}-z^{q n}}{t-z} \cdot \frac{1}{z^{n}-\sigma^{\prime \prime}}\right) \tag{3.6}\\
& S_{2}(t, z)=\frac{s}{t^{q n}-1} L_{q n-1}\left(z, \frac{t^{q n}-z^{4 n}}{t-z} \cdot \frac{1}{z^{n}-\sigma^{n}}\right)
\end{align*}
$$

It follows from (3.5) that

$$
\begin{equation*}
L_{q n-1}\left(z, R_{N-1, n}^{*}(z, f)\right)=I_{1}(z)-I_{2}(z) \tag{3.7}
\end{equation*}
$$

where

$$
I_{1}(z)=\frac{1}{2 \pi i} \int_{I} \frac{\left(t^{n}-\sigma^{n}\right) f(t)}{W_{s}(t)} S_{1}(t, z) d t
$$

and

$$
I_{2}(z)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{\left(t^{n}-\sigma^{n}\right) f(t)}{W_{s}(t)} S_{2}(t, z) d t
$$

Since

$$
\frac{\left(t^{q n}-z^{q n}\right)\left(t^{n}-\sigma^{n}\right)}{(t-z)\left(z^{n}-\sigma^{n}\right)}=\frac{t^{q n}-z^{q n}}{t-z}+\frac{\left(t^{\prime \prime}-z^{n}\right)\left(t^{q n}-z^{q n}\right)}{(t-z)\left(z^{n}-\sigma^{n}\right)}
$$

we have

$$
\begin{align*}
I_{1}(z)= & \frac{1}{2 \pi i} \int_{\Gamma} \frac{\left(f(t)\left(t^{q n}-z^{q n}\right)\right.}{(t-z)\left(t^{q n}-1\right)} d t \\
& +\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(t)}{t^{q n}-1} L_{q n-1}\left(z, \frac{\left(t^{q n}-z^{q n}\right)\left(t^{n}-z^{n}\right)}{(t-z)\left(z^{n}-\sigma^{n}\right)}\right) d t \tag{3.8}
\end{align*}
$$

The second integral in (3.8) vanishes because

$$
\frac{f(t)}{t^{q n}-1} L_{q n-1}\left(z, \frac{\left(t^{q n}-z^{q n}\right)\left(t^{n}-z^{n}\right)}{(t-z)\left(z^{n}-\sigma^{n}\right)}\right)=\frac{f(t)\left(t^{n}-z^{n}\right)}{(t-z)\left(z^{n}-\sigma^{n}\right)}
$$

Therefore,

$$
\begin{equation*}
I_{1}(z)=L_{q n-1}(z, f) . \tag{3.9}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
I_{2}(z)=I_{3}(z)+I_{4}(z) \tag{3.10}
\end{equation*}
$$

where

$$
\begin{align*}
I_{3}(z) & =\frac{s}{2 \pi i} \int_{\Gamma} \frac{f(t)}{t^{s q n}-1} L_{q m-1}\left(z, \frac{t^{q n}-z^{q n}}{t-z}\right) d t \\
& =\frac{s}{2 \pi i} \sum_{v=0}^{q n-1} z^{v} \int_{\Gamma} \frac{f(t)}{t^{v+1}} \cdot \frac{t^{q n}}{t^{s q n}-1} d t \tag{3.11}
\end{align*}
$$

and

$$
I_{4}(z)=\frac{s}{2 \pi i} \int_{\Gamma} \frac{f(t)}{t^{s q n}-1} L_{q n-1}\left(z, \frac{\left(t^{q n}-z^{q n}\right)\left(t^{n}-z^{n}\right)}{(t-z)\left(z^{n}-\sigma^{n}\right)}\right) d t
$$

Since $L_{q n-1}\left(z, 1 / z^{n}-\sigma^{n}\right)=\left(\sigma^{q n-n} / 1-\sigma^{q n}\right) \sum_{j=0}^{q-1} z^{j n} / \sigma^{m n}$, it is easy to see that

$$
\begin{equation*}
I_{4}(z)=\frac{s}{2 \pi i} \lambda_{0}(q) \int_{I} \frac{f(t)}{W_{s}(t)} \sum_{j=0}^{q-1} \sum_{v=0}^{n-1} \frac{t^{n-v-1} z^{j n+v}}{\sigma^{n j+n}} d t \tag{3.12}
\end{equation*}
$$

where $\lambda_{0}(q)$ is defined in (3.4). Combining (3.7) with (3.9)-(3.10) we obtain

$$
L_{q n-1}\left(z, R_{N-1, n}^{*}(z, f)\right)=L_{q n-1}(z, f)-I_{3}(z)-I_{4}(z) .
$$

Using (3.1), we observe that

$$
\begin{aligned}
L_{\varphi n-1}(z, h) & =s^{-1}\left[L_{q n-1}(z, f)-L_{q n-1}\left(z, R_{N-1 . n}^{*}(z, f)\right)\right] \\
& =s^{-1}\left[I_{3}(z)+I_{4}(z)\right] .
\end{aligned}
$$

Finally, the substitution of the values of $I_{3}(z)$ and $I_{4}(z)$ from (3.11)-(3.12) in the above relation establishes the equation (3.2) for which the coefficients are given in (3.3).

Now we proceed to determine a solution of the problem (P_{1}). First we note that any rational function $R(z) \in \mathscr{R}_{N^{*}, n}^{\sigma}\left(f, U_{s}\right)$ can be expressed as

$$
R(z)=R_{N-1, n}^{*}(z, f)+W_{s}(z) B(z)
$$

for some $B(z) \in \mathscr{R}_{n+m, n}^{\sigma}$. Here $R_{N-1, n}^{*}(z, f)$ is the rational function used in (3.1). Since $W_{s}\left(\lambda^{v}\right)=s$ for any solution λ of $z^{s q n}=1$, it follows that

$$
\begin{aligned}
\left|f\left(\lambda^{\nu}\right)-R\left(\lambda^{\nu}\right)\right|^{2} & =\left|f\left(\lambda^{\nu}\right)-R_{N-1, n}^{*}\left(\lambda^{\nu}, f\right)-s B\left(\lambda^{\nu}\right)\right|^{2} \\
& =\left|\operatorname{sh}\left(\lambda^{\nu}\right)-s B\left(\lambda^{\nu}\right)\right|^{2} .
\end{aligned}
$$

Thus the problem $\left(\mathrm{P}_{1}\right)$ is equivalent to minimizing

$$
\begin{equation*}
\sum_{v=0}^{\varphi n-1}\left|h\left(\omega^{v}\right)-B\left(\omega^{v}\right)\right|^{2}, \quad \omega^{q n}=1 \tag{3.13}
\end{equation*}
$$

over all rational functions $B \in \mathscr{S}_{n+m, n}^{\sigma}$. This problem had been solved by the author in [1]. In fact, if $L_{q n-1}(z, h):=\sum_{v=0}^{q n-1} c_{v} z^{v}$ then ([1], Proposition 1)

$$
\begin{equation*}
B_{n+m, n}^{*}(z, h):=\sum_{v=0}^{n+m} \tau_{v} z^{v} /\left(z^{n}-\sigma^{\prime \prime}\right) \tag{3.14}
\end{equation*}
$$

will be the minimizer of (3.13) over $\mathscr{R}_{n+m, n}^{\sigma}$ where

$$
\tau_{v}= \begin{cases}-c_{v} \sigma^{n}+\frac{\sigma^{(q-1) m}\left(1-\sigma^{2 n}\right)}{1-\sigma^{(q-1) 2 n}} \sum_{j=1}^{q-1} \sigma^{-j n} c_{v+j n}, & 0 \leqslant v \leqslant m \tag{3.15}\\ \frac{\sigma^{(q-1) n}\left(1-\sigma^{2 n}\right)}{1+\sigma^{q n}} \sum_{j=0}^{q-1} \sigma^{-j n} c_{v+j n}, & m+1 \leqslant v \leqslant n-1 \\ c_{v-n}-\frac{\sigma^{2(q-1) n}\left(1-\sigma^{2 n}\right)}{1-\sigma^{(q-1) 2 n}} \sum_{j=1}^{q-1} \sigma^{-j n} c_{v+1-1) n}, & n \leqslant v \leqslant n+m\end{cases}
$$

Now the description of c_{j} 's given in Lemma 3.1 can be applied to τ_{v} 's for the explicit representation of $B_{n+m, n}^{*}(z, h)$. Thus

$$
\begin{equation*}
R_{N *, n}^{*}(z, f):=R_{N-1, n}^{*}(z, f)+W_{s}(z) B_{n+m, n}^{*}(z, h) \tag{3.16}
\end{equation*}
$$

is the rational function in $\mathscr{R}_{N \cdot}^{a}, n\left(f, U_{s}\right)$ which provides the desired solution of (P_{I}).

Remark 3.2. The relation (3.15) reduces to $\tau_{v}=\left(1-\sigma^{n}\right) c_{v}, 0 \leqslant v \leqslant n-1$ when $q=1$ and $m=-1$. Thus, the rational function $B_{n-1, n}^{*}(z, h)$ turns out to be $\left[\left(1-\sigma^{n}\right) /\left(z^{n}-\sigma^{n}\right)\right] L_{n-1}(z, h)$. Consequently, the solution (3.16) to (P_{1}), in this case, bases entirely on the interpolatory character of the rational functions $R_{N-1, n}^{*}(z, f)$ and $B_{n-1, n}^{*}(z, h)$.

4. Solution of $\left(\mathrm{P}_{2}\right)$

The problem (P_{2}) deals with Walsh-type equiconvergence. Here we shall provide its solution and note that it extends an earlier result due to Sharma and Ziegler ([4], Theorem 1). In order to avoid lengthly expressions in the calculations, we shall discuss the problem $\left(\mathrm{P}_{2}\right)$ for $m=-1$. However, the solution stands valid for any integer $m<-1$. More precisely, we prove

Theorem 4.1. Let $s \geqslant 2$ and $q \geqslant 2$ be fixed integers, and let $N:=$ ($s-1$) qn. If $f \in A_{\rho}, 1<\rho<\infty$, and $\sigma>1$ then (cf. (2.4))

$$
\begin{equation*}
\lim _{n \rightarrow x}\left\{R_{N+n-1 . n}^{*}(z, f)-r_{N+n-1 . n}(z, f)\right\}=0, \quad \forall z \in D_{\sigma} \tag{4.1}
\end{equation*}
$$

where D_{σ} for $q \geqslant 3$ is given $b y$
(i) $\left\{z \in \mathscr{C}:|z|<\rho^{1+1 /(s-1)}\right\}$
if $\sigma \geqslant \rho^{q-1}$
(ii) $\left\{z \in \mathscr{G}:|z|<\rho^{1+1 /(s-1) q} \cdot \sigma^{1 /(s-1) q},|z| \neq \sigma\right\}$ if $\rho \leqslant \sigma<\rho^{q-1}$
(iii) $\left\{z \in \mathscr{C}:|z|<\rho \cdot \sigma^{2(s-1) q},|z| \neq \sigma\right\} \quad$ if $\sigma<\rho$,
and for $q=2, D_{\sigma}$ is given by

$$
\begin{array}{ll}
\text { (i) }\left\{z \in \mathscr{C}:|z|<\rho^{1+1 /(s-1)}\right\} & \text { if } \sigma \geqslant \rho^{s} \\
\text { (ii) }\left\{z \in \mathscr{C}:|z|<\rho^{1+3 /(2 s-3)} \cdot \sigma^{1 /(3-2 s)},|z| \neq \sigma\right\} & \text { if } \rho \leqslant \sigma<\rho^{s} \\
\text { (iii) }\left\{z \in \mathscr{C}:|z|<\rho \cdot \sigma^{1 /(s-1)},|z| \neq \sigma\right\} & \text { if } \sigma<\rho .
\end{array}
$$

Moreover, the convergence is uniform and geometric in any compact subset of region D_{σ}.

The proof of the above theorem requires integral representations of the rational functions $R_{N+n-1, n}^{*}(z, f)$ and $r_{N+n-1, n}(z, f)$ together with some estimates which we describe below as remarks.

Remark 4.1. It is known that ([5], (1.4))

$$
\begin{equation*}
r_{N+n-1, n}(z, f)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{t^{n}-\sigma^{n}}{z^{n}-\sigma^{n}} \cdot \frac{k(t)-k(z)}{k(t)} d t \tag{4.2}
\end{equation*}
$$

where Γ is a circle $|t|=\rho^{\prime}, 1<\rho^{\prime}<\rho$, and

$$
\begin{equation*}
k(t)=t^{N}\left(t^{n}-\sigma^{-n}\right) \tag{4.3}
\end{equation*}
$$

Remark 4.2. If we set

$$
\begin{equation*}
\delta_{1}=\frac{\sigma^{(q-1 / n}\left(1-\sigma^{2 n}\right)}{1+\sigma^{q n}}, \quad \delta_{2}=\frac{1-(\sigma t)^{-q n}}{1-(\sigma t)^{-n}} \tag{4.4}
\end{equation*}
$$

then using (3.3) we can write

$$
\sum_{j=0}^{q-1} \sigma^{-j n} c_{v+j n}=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(t)}{t^{v+1} W_{s}(t)}\left\{\frac{t^{n}}{\sigma^{n}} \lambda_{0}(q)+\frac{t^{q n}}{t^{q n}-1} \delta_{2}\right\} d t
$$

where $\lambda_{0}(q)$ is given by (3.4). Thus the numerator of the rational function $B_{n-1 . n}^{*}(z, h)(c f .(3.14))$ can be expressed as

$$
\begin{equation*}
\sum_{\nu=0}^{n+1} \tau_{v} z^{v}=\frac{1}{2 \pi i} \int_{r} \frac{f(t)}{W_{s}(t)}\left\{\frac{t^{n}}{\sigma^{n}} \delta_{1} \lambda_{0}(q)+\frac{t^{q n}}{t^{q n}-1} \delta_{1} \delta_{2}\right\} \frac{t^{n}-z^{n}}{t^{n}(t-z)} d t \tag{4.5}
\end{equation*}
$$

Remark 4.3. Due to the interpolatory properties of the rational function $R_{N-1 . n}^{*}(z, f)$ (cf. (3.1)) we have the following integral representations:

$$
\begin{equation*}
R_{N-1, n}^{*}(z, f)=\frac{1}{2 \pi i} \int_{\Gamma} \frac{t^{n}-\sigma^{n}}{z^{n}-\sigma^{n}} \cdot \frac{W_{s}(t)-W_{s}(z)}{W_{s}(t)} \cdot \frac{f(z)}{t-z} d t \tag{4.6}
\end{equation*}
$$

Remark 4.4. Since $\sigma>1$, we have the following estimates (cf. (4.4), (3.4)):

$$
\begin{align*}
& \delta_{1} \lambda_{0}(q)=\sigma^{n}\left(1-\sigma^{-2 n}\right)+O\left(\sigma^{-2 q n+n}\right) \\
& \delta_{2} \lambda_{0}(q)=\frac{t^{n} \sigma^{n}\left(\sigma^{-2 n}-1\right)}{t^{n}-\sigma^{-n}}+O\left(\sigma^{-q n+n}\right) . \tag{4.7}
\end{align*}
$$

The above remarks bring us to the

Proof of Theorem 4.1. From (4.2), (4.5), and (4.6) we can write

$$
\begin{align*}
& R_{N+n-1}^{*}(z, f)-r_{N+n-1}(z, f) \\
& \left.\quad=\frac{1}{2 \pi i} \int_{\Gamma} \frac{f(t)}{t-z}\left\{K_{1}, z, \sigma\right)+K_{2}(t, z, \sigma)-K_{3}(t, z, \sigma)\right\} d t \tag{4.8}
\end{align*}
$$

where

$$
\begin{aligned}
& K_{1}(t, z, \sigma)=\frac{k(z)}{k(t)} \cdot \frac{t^{n}-\sigma^{n}}{z^{n}-\sigma^{n}} \\
& K_{2}(t, z, \sigma)=\frac{W_{s}(z)}{W_{s}(t)} \cdot \frac{1}{z^{n}-\sigma^{n}}\left\{\frac{t^{n}}{\sigma^{n}} \delta_{1} \lambda_{0}(q)+\frac{t^{q n}}{t^{q n}-1} \delta_{1} \delta_{2}-\left(t^{n}-\sigma^{n}\right)\right\}, \\
& K_{3}(t, z, \sigma)=\frac{W_{s}(z)}{W_{s}(t)} \cdot \frac{1}{z^{n}-\sigma^{n}}\left\{\frac{t^{\prime \prime}}{\sigma^{n}} \delta_{1} \lambda_{0}(q)+\frac{t^{q n}}{t^{q n}-1} \delta_{1} \delta_{2}\right\} \frac{z^{n}}{t^{n}}
\end{aligned}
$$

After the cancellation of suitable terms and using (4.7) together with the estimate $W_{s}(z) / W_{s s}(t)=O\left(z^{N} / t^{N}\right)$ we notice that

$$
\begin{equation*}
K_{2}(t, z, \sigma)=\frac{1}{z_{n}^{n-\sigma}} O\left(\frac{z^{N}}{t^{N}} \max \left\{\frac{|t|^{n}}{\sigma^{2 n}}, \frac{\sigma^{n}}{|t|^{q^{n}}}, \frac{1}{\sigma^{n}}\right\}\right) \tag{4.9}
\end{equation*}
$$

Similarly, a detailed analysis with appropriate cancellation of certain terms of higher order leads us to

$$
\begin{align*}
K_{1}(t, z, & \sigma)-K_{3}(t, z, \sigma) \\
= & \frac{1}{z^{n}-\sigma^{n}}\left\{O\left(\frac{z^{N}}{t^{N}} \max \left\{\frac{1}{\sigma^{n}}, \frac{1}{|t|^{n}}\right\}\right)\right. \\
& +O\left(\frac{z^{N+n}}{t^{N}} \max \left\{\frac{1}{|t|^{s q n}}, \frac{1}{|t|^{n} \sigma^{n}}, \frac{\sigma^{n}}{|t|^{\operatorname{san}+n}}, \frac{1}{\sigma^{2 n}}\right\}\right) \\
& \left.+O\left(\frac{z^{N-q n+n}}{t^{N}} \max \left\{1, \frac{\sigma^{n}}{|t|^{n}}\right\}\right)\right\} . \tag{4.10}
\end{align*}
$$

Thus, from (4.9) and (4.10) we can write

$$
\begin{aligned}
& K_{1}(t, z, \sigma)+K_{2}(t, z, \sigma)-K_{3}(t, z, \sigma) \\
&=\frac{1}{z^{n}-\sigma^{n}}\left\{O\left(T_{1}\right)+O\left(T_{2}\right)+O\left(T_{3}\right)\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& T_{1}=\frac{z^{(s-2) q n+n}}{t^{(s-1) q n}} \max \left\{1, \frac{\sigma^{n}}{|t|^{n}}\right\}, \\
& T_{2}=\frac{z^{(s-1) q n}}{t^{\sin }} \max \left\{\frac{|t|^{(q+1) n}}{\sigma^{2 n}}, \frac{|t|^{q^{n}}}{\sigma^{n}},|t|^{(q-1) n}, \sigma^{n}\right\} \\
& T_{3}=\frac{z^{(s-1) q n+n}}{t^{(s-1) q n}} \max \left\{\frac{1}{|t|^{s q n}}, \frac{1}{|t|^{n} \sigma^{n}}, \frac{\sigma^{n}}{|t|^{\operatorname{sqn} n+n}}, \frac{1}{\sigma^{2 n}}\right\} .
\end{aligned}
$$

After considering various cases for σ separately for the integers $q \geqslant 3$ and $q=2$, we analyze the order of the terms T_{1}, T_{2}, T_{3}. This leads us to the determination of different regions of convergence for (4.8) as desired in the theorem.

Remark 4.5. Theorem 4.1 does not consider the case when $s=1$ or $q=1$. These cases are already settled in [1] and [5], respectively. It is worth mentioning that problem $\left(\mathbf{P}_{1}\right)$ entirely deals with l_{2}-minimization if $s=1$, whereas it reduces to an interpolation problem when $q=1$.

Remark 4.6. IIf we let $\sigma \rightarrow \infty$ in Theorem 4.1, we retrive a result of Sharma-Ziegler ([4], Theorem 1).

5. Generalization of Problems P_{1} and P_{2}

The problem P_{1} discussed above involves the nodes distributed uniformly on the unit circle. We may formulate this problem in a more general setting where the nodes are selected on the circles of radii α and β with $\max \{\alpha, \beta\}<\rho$. The underlying idea in this set up is due to a result of Lou Yuanren [8]. We conclude our paper with the following generalization of problems P_{1} and P_{2} :
(P_{1}^{*}) Let $0<\alpha<\rho$ be a real number. Consider the zeros of $z^{q n s}-\alpha^{q n s}$ and divide them into two disjoint sets $U_{s, \alpha}$ and $V_{s, \alpha}$ where $V_{s, \alpha}=\{$ set of zeros of $\left.z^{q n}-\alpha^{q n}\right\}$ and $U_{s, \alpha}=\left\{\right.$ set of zeros of polynomial $W_{z, \alpha}(z)=$ $\left.\left(z^{q n s}-\alpha^{q n s}\right) /\left(z^{q n}-\alpha^{q n}\right)\right\}$. Then $\# V_{s, x}=n q$ and $\# U_{s, x}=N:=q n(s-1)$ where \# V denotes the cardinality of a set V. If $\sigma>1$ is any real number, let R_{N+m+n}^{σ} denote the class of rational functions of the form $p(z) /\left(z^{n}-\sigma^{n}\right), p(z) \in \pi_{N+n+m}$. We shall denote by $R_{N+m+n, x}^{\sigma}(z, f)$ the subset of rational functions from the class R_{N+m+n}^{σ} which interpolate
$f(z) \in A_{\rho}, \rho>1$, on the set $U_{s, x}$. The problem is to determine the rational functions $R(z, \alpha, f) \in R_{N+m+n, \alpha}^{\sigma}$ which minimizes.

$$
\begin{equation*}
\sum_{k=0}^{q n-1}\left|f\left(\alpha \omega^{k}\right)-R\left(\alpha \omega^{k}, f\right)\right|^{2}, \quad \omega^{q n}=1 \tag{5.1}
\end{equation*}
$$

$\left(\mathrm{P}_{1}^{* *}\right)$ In this problem, we replace the set $V_{s . x}$ by $V_{s . \beta}$ where $0<$ $\alpha \neq \beta<\rho$ and seek the rational function $R(z, \alpha . \beta, f) \in R_{N+m+n, \alpha}^{\sigma}(z, f)$ such that it attains the

$$
\begin{equation*}
\min \sum_{k=0}^{q n-1}\left|f\left(\beta \omega^{k}\right)-R\left(\beta \omega^{k}, f\right)\right|^{2}, \quad \omega^{q n}=1 \tag{5.2}
\end{equation*}
$$

(P_{2}^{*}) If $r_{N+m+n}(z, f) \in R_{N+m+n}^{\sigma}$ minimizes the difference $\left|f(z)-r_{N+m+n}(z, f)\right|$ in the L^{2}-norm on $|z|=1$, we want to find the regions of equiconvergence of the difference $\left|r_{N+m+n}(z, f)-R(z, \alpha, f)\right|$ and $\left|r_{N+m+n}(z, f)-R(z, \alpha, \beta, f)\right|$ respectively.

Acknowledgment

The proof of Lemma 3.1 in the present form is due to Professor Ambikeshwar Sharma. The author is grateful for his suggestions.

References

1. M. A. Bokhari, On certain sequences of least squares approximants, Bull. Austral. Math. Soc. 38 (1988), 415-442.
2. A. S. Cavaretta, Jr., A. Sharma, and R. S. Varga, Interpolation in the roots of unity: an extension of a Theorem of J. L. Walsh, Resultate Math. 3 (1981), 155-191.
3. T. J. Riviln, On Walsh equiconvergence, J. Approx. Theory 36 (1982), 334-345.
4. A. Sharma and Z. Ziegler, Walsh equiconvergence for best l_{2}-Approximates, Studia Math. LXXVII (1984), 523-528.
5. E. B. Saff and A. Sharma, On equiconvergence of certain sequences of rational interpolants, in "Proceedings of Rational Approximations and Interpolation," pp. 256-271, Lecture Notes in Mathematics, Vol. 1105, Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, 1984.
6. R. S. Varga, Topics in polynomial and rational approximation, in "Séminare. de Math. Supérieures Les Presses de L’Univ. de Montréal, 1982," pp. 69-93.
7. J. L. Walsh, "Interpolation and Approximation by Rational Functions in the Complex Domain," Amer. Math. Soc. Colloq. Publi., Vol. XX, 5th ed., RI., Amer. Math. Soc., Providence, 1969.
8. Lou Yuanren, Extension of a theorem of J. L. Walsh on the overconvergence, Approx. Theory Appl. 2, No. 3 (1986), 19-32.
